This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub naskya/cp-library-cpp
#define PROBLEM "https://yukicoder.me/problems/no/1300" #include <algorithm> #include <iostream> #include <iterator> #include <map> #include "../../../include/algebra/static_modint.hpp" #include "../../../include/data_structure/binary_indexed_tree.hpp" int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); int N; std::cin >> N; std::vector<int> A(N); std::copy_n(std::istream_iterator<int>(std::cin), N, std::begin(A)); std::map<int, int> count; std::for_each(std::cbegin(A), std::cend(A), [&](const int a) { ++count[a]; }); std::vector<std::pair<int, int>> L, R; std::for_each(std::cbegin(count), std::cend(count), [&](const auto p) { L.emplace_back(p); R.emplace_back(p); }); std::sort(std::begin(L), std::end(L)); std::sort(std::rbegin(R), std::rend(R)); const int M = static_cast<int>(std::size(L)); lib::binary_indexed_tree<long long> L_acc(M), R_acc(M); lib::binary_indexed_tree<int> L_cnt(M), R_cnt(M); for (int i = 0; i < M; i++) { L_acc.add(i, L[i].first * L[i].second); L_cnt.add(i, L[i].second); R_acc.add(i, R[i].first * R[i].second); R_cnt.add(i, R[i].second); } using mint = lib::static_modint<998244353>; std::vector<mint> right(N), left(N); std::vector<int> rs(N), ls(N); for (int i = 0; i < N - 1; i++) { const int idx = static_cast<int>(std::distance(std::cbegin(L), std::lower_bound(std::cbegin(L), std::cend(L), std::pair {A[i], 0}))); L_cnt.add(idx, -1); L_acc.add(idx, -A[i]); if (i == 0 || idx == 0) continue; right[i] = mint(L_acc.sum(0, idx)); rs[i] = L_cnt.sum(0, idx); } for (int i = 0; i < N - 1; i++) { const int idx = static_cast<int>(std::distance(std::lower_bound(std::crbegin(R), std::crend(R), std::pair {A[N - 1 - i], 0}), std::crend(R)) - 1); --R[idx].second; R_cnt.add(idx, -1); R_acc.add(idx, -A[N - 1 - i]); if (i == 0 || idx == 0) continue; left[i] = mint(R_acc.sum(0, idx)); ls[i] = R_cnt.sum(0, idx); } std::reverse(std::begin(left), std::end(left)); std::reverse(std::begin(ls), std::end(ls)); mint res; for (int i = 0; i < N - 1; i++) { res += mint(right[i]) * ls[i]; res += mint(left[i]) * rs[i]; res += mint(A[i]) * rs[i] * ls[i]; } std::cout << res << '\n'; }
#line 1 "test/data_structure/binary_indexed_tree/1.test.cpp" #define PROBLEM "https://yukicoder.me/problems/no/1300" #include <algorithm> #include <iostream> #include <iterator> #include <map> #line 1 "include/algebra/static_modint.hpp" //! @file static_modint.hpp #ifndef CP_LIBRARY_STATIC_MODINT_HPP #define CP_LIBRARY_STATIC_MODINT_HPP #include <cassert> #include <cstdint> #line 10 "include/algebra/static_modint.hpp" #include <limits> #include <type_traits> #define CP_LIBRARY_USE_CONSTEXPR #ifndef CP_LIBRARY_WARN # if (CP_LIBRARY_DEBUG_LEVEL >= 1) //! @brief Print warning message //! @note You can suppress the warning by uncommenting the following line # define CP_LIBRARY_WARN(msg) (std::cerr << (msg) << '\n') // # define CP_LIBRARY_WARN(msg) (static_cast<void>(0)) # else # define CP_LIBRARY_WARN(msg) (static_cast<void>(0)) # undef CP_LIBRARY_USE_CONSTEXPR # define CP_LIBRARY_USE_CONSTEXPR constexpr # endif # define CP_LIBRARY_WARN_NOT_DEFINED #endif #ifndef CP_LIBRARY_ASSERT //! @brief Assert macro # define CP_LIBRARY_ASSERT(...) assert(__VA_ARGS__) # define CP_LIBRARY_ASSERT_NOT_DEFINED #endif namespace lib { //! @brief modint (for compile-time constant modulo) //! @tparam modulo modulo (e.g. 1000000007). template <std::int_least32_t modulo, std::enable_if_t<(1 < modulo) && (modulo < std::numeric_limits<std::int_least32_t>::max() / 2), std::nullptr_t> = nullptr> struct static_modint { private: std::int_least32_t value; //! @param n non-zero integer //! @return multiplicative inverse of n template <typename Tp> [[nodiscard]] static std::int_least32_t calc_inverse(Tp n) { CP_LIBRARY_ASSERT(n != 0); Tp b = modulo, u = 1, v = 0, t; while (b > 0) { t = n / b; // std::swap is not necessarily constexpr in C++17 // std::swap(n -= t * b, b); Tp tmp = std::move(n -= t * b); n = std::move(b); b = std::move(tmp); // std::swap(u -= t * v, v); tmp = std::move(u -= t * v); u = std::move(v); v = std::move(tmp); } if (u < 0) u += modulo; return static_cast<std::int_least32_t>(u); } //! @brief Calculate modulo and keep the value within [0, modulo) //! @param v integer //! @return integer within [0, modulo) //! @note Time complexity: O(1) template <typename Tp> [[nodiscard]] static constexpr std::int_least32_t clamp_ll(Tp v) noexcept { #pragma GCC diagnostic push #pragma GCC diagnostic ignored "-Wsign-compare" if (modulo <= v || v < -modulo) v %= modulo; #pragma GCC diagnostic pop if (v < 0) v += modulo; return static_cast<std::int_least32_t>(v); } //! @brief Calculate modulo and keep the value within [0, modulo) //! @note Time complexity: O(1) constexpr void clamp_self() noexcept { if (0 <= value) { if (value < modulo) return; if (value < modulo * 2) value -= modulo; else value -= modulo * 2; } else { if (-modulo < value) value += modulo; else if (-modulo * 2 < value) value += modulo * 2; else { value += modulo; value += modulo * 2; } } } public: //! @brief underlying integer type using type = std::int_least32_t; //! @return modulo (e.g. 1000000007) [[nodiscard]] static constexpr type mod() noexcept { return modulo; } //! @brief Create a modint of value 0 constexpr static_modint() noexcept : value(0) {} //! @brief Create a modint without taking modulo constexpr static_modint(const type v, bool) noexcept : value(v) {} //! @brief Create a modint template <typename ValueType> constexpr static_modint(const ValueType v) noexcept : value() { if constexpr (std::is_integral_v<ValueType> && (std::numeric_limits<ValueType>::digits <= 32)) { value = v; clamp_self(); } else { value = clamp_ll(v); } } [[nodiscard]] constexpr static_modint operator+(const static_modint rhs) const noexcept { return static_modint(value + rhs.value); } [[nodiscard]] constexpr static_modint operator-(const static_modint rhs) const noexcept { return static_modint(value - rhs.value); } [[nodiscard]] constexpr static_modint operator*(const static_modint rhs) const noexcept { return static_modint(static_cast<std::int_least64_t>(value) * rhs.value); } [[nodiscard]] static_modint operator/(const static_modint rhs) const { return static_modint(static_cast<std::int_least64_t>(value) * calc_inverse(rhs.value)); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator%(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator% : Are you sure you want to do this?"); return static_modint(value % rhs.value); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator&(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator& : Are you sure you want to do this?"); return static_modint(value & rhs.value, true); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator|(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator| : Are you sure you want to do this?"); return static_modint(value | rhs.value); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator^(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator^ : Are you sure you want to do this?"); return static_modint(value ^ rhs.value); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator<<(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator<< : Are you sure you want to do this?"); return static_modint(static_cast<std::int_least64_t>(value) << rhs.value); } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator>>(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator>> : Are you sure you want to do this?"); return static_modint(value >> rhs.value, true); } constexpr static_modint& operator+=(const static_modint rhs) noexcept { value += rhs.value; if (value >= modulo) value -= modulo; return *this; } constexpr static_modint& operator-=(const static_modint rhs) noexcept { value -= rhs.value; if (value < 0) value += modulo; return *this; } constexpr static_modint& operator*=(const static_modint rhs) noexcept { value = clamp_ll(static_cast<std::int_least64_t>(value) * rhs.value); return *this; } static_modint& operator/=(const static_modint rhs) { value = clamp_ll(static_cast<std::int_least64_t>(value) * calc_inverse(rhs.value)); return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator%=(const static_modint rhs) { CP_LIBRARY_WARN("static_modint::operator%= : Are you sure you want to do this?"); value %= rhs.value; if (value < 0) value += modulo; return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator&=(const static_modint rhs) { CP_LIBRARY_WARN("static_modint::operator&= : Are you sure you want to do this?"); value &= rhs.value; return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator|=(const static_modint rhs) { CP_LIBRARY_WARN("static_modint::operator|= : Are you sure you want to do this?"); value |= rhs.value; clamp_self(); return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator^=(const static_modint rhs) { CP_LIBRARY_WARN("static_modint::operator^= : Are you sure you want to do this?"); value ^= rhs.value; clamp_self(); return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator<<=(const static_modint rhs) { CP_LIBRARY_WARN("operator<<= : Are you sure you want to do this?"); value = clamp_ll(static_cast<std::int_least64_t>(value) << rhs.value); return *this; } CP_LIBRARY_USE_CONSTEXPR static_modint& operator>>=(const static_modint rhs) { CP_LIBRARY_WARN("operator>>= : Are you sure you want to do this?"); value >>= rhs.value; return *this; } template <typename RhsType> [[nodiscard]] constexpr static_modint operator+(const RhsType rhs) const noexcept { return static_modint(value + clamp_ll(rhs)); } template <typename RhsType> [[nodiscard]] constexpr static_modint operator-(const RhsType rhs) const noexcept { return static_modint(value - clamp_ll(rhs)); } template <typename RhsType> [[nodiscard]] constexpr static_modint operator*(const RhsType rhs) const noexcept { return static_modint(static_cast<std::int_least64_t>(value) * clamp_ll(rhs)); } template <typename RhsType> [[nodiscard]] static_modint operator/(const RhsType rhs) const { std::int_least64_t mul = (rhs > 0) ? calc_inverse(rhs) : -calc_inverse(-rhs); return static_modint(value * mul); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator%(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator% : Are you sure you want to do this?"); return static_modint(value % rhs, true); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator&(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator& : Are you sure you want to do this?"); return static_modint(value & rhs, true); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator|(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator| : Are you sure you want to do this?"); return static_modint(value | rhs); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator^(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator^ : Are you sure you want to do this?"); return static_modint(value ^ rhs); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator<<(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator<< : Are you sure you want to do this?"); return static_modint(static_cast<std::int_least64_t>(value) << rhs); } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator>>(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator>> : Are you sure you want to do this?"); return static_modint(value >> rhs, true); } template <typename RhsType> constexpr static_modint& operator+=(const RhsType rhs) noexcept { value = clamp_ll(static_cast<std::int_least64_t>(value) + rhs); return *this; } template <typename RhsType> constexpr static_modint& operator-=(const RhsType rhs) noexcept { value = clamp_ll(static_cast<std::int_least64_t>(value) - rhs); return *this; } template <typename RhsType> constexpr static_modint& operator*=(const RhsType rhs) noexcept { value = clamp_ll(static_cast<std::int_least64_t>(value) * clamp_ll(rhs)); return *this; } template <typename RhsType> static_modint& operator/=(const RhsType rhs) { std::int_least64_t mul = (rhs > 0) ? calc_inverse(rhs) : -calc_inverse(-rhs); value = clamp_ll(value * mul); return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator%=(const RhsType rhs) { CP_LIBRARY_WARN("static_modint::operator%= : Are you sure you want to do this?"); value %= rhs; return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator&=(const RhsType rhs) { CP_LIBRARY_WARN("static_modint::operator&= : Are you sure you want to do this?"); value &= rhs; return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator|=(const RhsType rhs) { CP_LIBRARY_WARN("static_modint::operator|= : Are you sure you want to do this?"); value |= rhs; clamp_self(); return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator^=(const RhsType rhs) { CP_LIBRARY_WARN("static_modint::operator^= : Are you sure you want to do this?"); value ^= rhs; clamp_self(); return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator<<=(const RhsType rhs) { CP_LIBRARY_WARN("operator<<= : Are you sure you want to do this?"); value = clamp_ll(static_cast<std::int_least64_t>(value) << rhs); return *this; } template <typename RhsType> CP_LIBRARY_USE_CONSTEXPR static_modint& operator>>=(const RhsType rhs) { CP_LIBRARY_WARN("operator>>= : Are you sure you want to do this?"); value >>= rhs; return *this; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator!() const { CP_LIBRARY_WARN("static_modint::operator! : Are you sure you want to do this?"); return value == 0; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint operator~() const { CP_LIBRARY_WARN("static_modint::operator~ : Are you sure you want to do this?"); return static_modint(~value); } [[nodiscard]] constexpr static_modint operator-() const noexcept { return static_modint(value == 0 ? 0 : modulo - value, true); } [[nodiscard]] constexpr static_modint& operator+() const noexcept { return *this; } constexpr static_modint& operator++() noexcept { value = ((value + 1 == modulo) ? 0 : value + 1); return *this; } constexpr static_modint& operator--() noexcept { value = ((value == 0) ? modulo - 1 : value - 1); return *this; } constexpr static_modint operator++(int) noexcept { std::int_least32_t res = value; ++(*this); return static_modint(res, true); } constexpr static_modint operator--(int) noexcept { std::int_least32_t res = value; --(*this); return static_modint(res, true); } [[nodiscard]] constexpr bool operator==(const static_modint rhs) const noexcept { return value == rhs.value; } [[nodiscard]] constexpr bool operator!=(const static_modint rhs) const noexcept { return value != rhs.value; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator< : Are you sure you want to do this?"); return value < rhs.value; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<=(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator<= : Are you sure you want to do this?"); return value <= rhs.value; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator> : Are you sure you want to do this?"); return value > rhs.value; } [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>=(const static_modint rhs) const { CP_LIBRARY_WARN("static_modint::operator>= : Are you sure you want to do this?"); return value >= rhs.value; } template <typename RhsType> [[nodiscard]] constexpr bool operator==(const RhsType rhs) const noexcept { return value == rhs; } template <typename RhsType> [[nodiscard]] constexpr bool operator!=(const RhsType rhs) const noexcept { return value != rhs; } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator< : Are you sure you want to do this?"); return value < rhs; } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<=(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator<= : Are you sure you want to do this?"); return value <= rhs; } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator> : Are you sure you want to do this?"); return value > rhs; } template <typename RhsType> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>=(const RhsType rhs) const { CP_LIBRARY_WARN("static_modint::operator>= : Are you sure you want to do this?"); return value >= rhs; } [[nodiscard]] constexpr operator std::int_least32_t() const { CP_LIBRARY_WARN("A value of type static_modint has been cast to type std::int_lease32_t."); return value; } //! @brief Read value (64-bit signed integer) from std::istream& is, take modulo, and store it in rhs. //! @return std::istream& is friend std::istream& operator>>(std::istream& is, static_modint& rhs) { std::int_least64_t tmp; is >> tmp; if (tmp < -modulo || modulo <= tmp) tmp %= modulo; if (tmp < 0) tmp += modulo; rhs.value = static_cast<std::int_least32_t>(tmp); return is; } //! @brief Print value to std::ostream& os //! @return std::ostream& os friend std::ostream& operator<<(std::ostream& os, static_modint& rhs) { return os << rhs.value; } //! @return multiplicative inverse [[nodiscard]] static_modint inv() const { return static_modint(calc_inverse(value), true); } //! @tparam index_positive_guaranteed set true if and only if you can promise that index is positive //! @tparam Tp integer type (deduced from parameter) //! @param index index. This must be an integer, but doesn't have to be primitive. //! @return index-th power of the value //! @note Time complexity: O(log(index)) template <bool index_positive_guaranteed = true, typename Tp = std::int_least32_t> [[nodiscard]] static_modint pow(Tp index) const noexcept { if constexpr (!index_positive_guaranteed) { if (value == 0) return static_modint(0, true); if (index == 0) return static_modint(1, true); if (index < 0) return static_modint(value, true).inv().pow<true>(-index); } static_modint res(1, true), base(value, true); while (index > 0) { if ((index & 1) == 1) res *= base; base *= base; index >>= 1; } return res; } //! @return a pair (a, b) such that b > 0, value is equal to a * (mult inverse of b), and (a + b) is minimal [[nodiscard]] constexpr std::pair<std::int_least32_t, std::int_least32_t> to_frac() const noexcept { std::int_least32_t x = modulo - value, y = value, u = 1, v = 1; std::pair<std::int_least32_t, std::int_least32_t> res {value, 1}; std::int_least32_t num = value, den = 1; std::int_least32_t cost = num + den; while (x > 0) { if (x <= num) { std::int_least32_t q = num / x; num = num % x; den += q * u; if (num == 0) break; if (num + den < cost) { cost = num + den; res.first = num; res.second = den; } } std::int_least32_t q = y / x; y = y % x; v += q * u; q = x / y; x = x % y; u += q * v; } return res; } }; template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] constexpr static_modint<modulo> operator+(const LhsType lhs, const static_modint<modulo> rhs) noexcept { return rhs + lhs; } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] constexpr static_modint<modulo> operator-(const LhsType lhs, const static_modint<modulo> rhs) noexcept { return -rhs + lhs; } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] constexpr static_modint<modulo> operator*(const LhsType lhs, const static_modint<modulo> rhs) noexcept { return rhs * lhs; } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] static_modint<modulo> operator/(const LhsType lhs, const static_modint<modulo> rhs) { return rhs.inv() * lhs; } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint<modulo> operator%(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator% : Are you sure you want to do this?"); return static_modint<modulo>(lhs % static_cast<std::int_least32_t>(rhs), true); } template <typename LhsType, std::int_least32_t modulo, std::enable_if_t<std::is_integral_v<LhsType>, std::nullptr_t> = nullptr> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint<modulo> operator<<(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator<< : Are you sure you want to do this?"); return static_modint<modulo>(static_cast<std::int_least64_t>(lhs) << static_cast<std::int_least32_t>(rhs)); } template <typename LhsType, std::int_least32_t modulo, std::enable_if_t<std::is_integral_v<LhsType>, std::nullptr_t> = nullptr> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR static_modint<modulo> operator>>(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator>> : Are you sure you want to do this?"); return static_modint<modulo>(lhs >> static_cast<std::int_least32_t>(rhs)); } template <typename LhsType, std::int_least32_t modulo> constexpr LhsType& operator+=(LhsType& lhs, const static_modint<modulo> rhs) noexcept { return lhs += static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> constexpr LhsType& operator-=(LhsType& lhs, const static_modint<modulo> rhs) noexcept { return lhs -= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> constexpr LhsType& operator*=(LhsType& lhs, const static_modint<modulo> rhs) noexcept { return lhs *= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> constexpr LhsType& operator/=(LhsType& lhs, const static_modint<modulo> rhs) { return lhs /= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator%=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator%= : Are you sure you want to do this?"); return lhs %= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator&=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator&= : Are you sure you want to do this?"); return lhs &= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator|=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator|= : Are you sure you want to do this?"); return lhs |= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator^=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator^= : Are you sure you want to do this?"); return lhs ^= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator<<=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("operator<<= : Are you sure you want to do this?"); return lhs <<= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> CP_LIBRARY_USE_CONSTEXPR LhsType& operator>>=(LhsType& lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("operator>>= : Are you sure you want to do this?"); return lhs >>= static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator< : Are you sure you want to do this?"); return lhs < static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator<=(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator<= : Are you sure you want to do this?"); return lhs < static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator> : Are you sure you want to do this?"); return lhs < static_cast<std::int_least32_t>(rhs); } template <typename LhsType, std::int_least32_t modulo> [[nodiscard]] CP_LIBRARY_USE_CONSTEXPR bool operator>=(const LhsType lhs, const static_modint<modulo> rhs) { CP_LIBRARY_WARN("static_modint::operator>= : Are you sure you want to do this?"); return lhs < static_cast<std::int_least32_t>(rhs); } } // namespace lib #undef CP_LIBRARY_USE_CONSTEXPR #ifdef CP_LIBRARY_WARN_NOT_DEFINED # undef CP_LIBRARY_WARN # undef CP_LIBRARY_WARN_NOT_DEFINED # ifdef CP_LIBRARY_WARN # undef CP_LIBRARY_WARN # endif #endif #ifdef CP_LIBRARY_ASSERT_NOT_DEFINED # undef CP_LIBRARY_ASSERT # undef CP_LIBRARY_ASSERT_NOT_DEFINED #endif #endif // CP_LIBRARY_STATIC_MODINT_HPP #line 1 "include/data_structure/binary_indexed_tree.hpp" //! @file binary_indexed_tree.hpp #ifndef CP_LIBRARY_BINARY_INDEXED_TREE_HPP #define CP_LIBRARY_BINARY_INDEXED_TREE_HPP #include <cassert> #line 9 "include/data_structure/binary_indexed_tree.hpp" #include <string> #include <vector> #ifndef CP_LIBRARY_ASSERT //! @brief Assert macro # define CP_LIBRARY_ASSERT(...) assert(__VA_ARGS__) # define CP_LIBRARY_ASSERT_NOT_DEFINED #endif namespace lib { namespace internal::binary_indexed_tree_hpp { //! @brief Normal binary indexed tree. //! @tparam Elem Element type. Watch out for overflows. template <typename Elem> class binary_indexed_tree_impl { private: int length; std::vector<Elem> data; //! @return Sum of the elements within [0, index) (0-indexed, half-open interval) [[nodiscard]] Elem partial_sum(int index) const { Elem res = 0; for (; index > 0; index -= (index & -index)) res += data[index]; return res; } public: //! @brief Construct a vector of n zeroes. //! @param n vector size explicit binary_indexed_tree_impl(const int n) : length(n), data(n + 1, (Elem) 0) {} //! @brief Construct a vector from an existing container. //! @tparam Container container type (deduced from parameter). //! @param src Source (container) template <typename Container> explicit binary_indexed_tree_impl(const Container& src) : length(static_cast<int>(std::size(src))), data(length + 1, (Elem) 0) { for (int i = 0; i < length; ++i) add(i, src[i]); } //! @brief Construct a vector of length n filled with initial_values. //! @param n vector size //! @param initial_value initial value for all elements binary_indexed_tree_impl(const int n, const Elem& initial_value) : length(n), data(n + 1, (Elem) 0) { for (int i = 0; i < length; ++i) add(i, initial_value); } //! @return Vector length [[nodiscard]] int size() const noexcept { return length; } //! @brief Add value to the index-th element. //! @param index index of the element to be added (0-indexed) //! @param value value to be added //! @note Time complexity: O(log size) void add(int index, const Elem& value) { CP_LIBRARY_ASSERT(0 <= index && index < length); for (++index; index <= length; index += (index & -index)) data[index] += value; } //! @brief Calculate interval sum. //! @param left lower limit of interval (0-indexed) //! @param right upper limit of interval (0-indexed) //! @return Sum of the elements within [left, right) (half-open interval) //! @note Time complexity: O(log size) [[nodiscard]] Elem sum(int left, int right) const { CP_LIBRARY_ASSERT(0 <= left && left <= right && right <= length); if (left == 0) return partial_sum(right); else return partial_sum(right) - partial_sum(left - 1); } //! @brief Get the value of the index-th element. //! @param index index (0-indexed) //! @note Time complexity: O(log size) [[nodiscard]] Elem get(int index) const { return partial_sum(index + 1) - partial_sum(index); } //! @brief Set the value of the index-th element to value. //! @param index index (0-indexed) //! @param value value to be set //! @note Time complexity: O(log size) void set(const int index, const Elem& value) { add(index, value - get(index)); } }; } // namespace internal::binary_indexed_tree_hpp //! @brief Binary indexed tree with uniform add function. //! @tparam Elem Element type. Watch out for overflows. template <typename Elem> class binary_indexed_tree { private: internal::binary_indexed_tree_hpp::binary_indexed_tree_impl<Elem> bit_0, bit_1; //! @return Sum of the elements within [0, index) (0-indexed, half-open interval) [[nodiscard]] Elem partial_sum(int index) const { return bit_0.sum(0, index) + bit_1.sum(0, index) * (index - 1); } public: //! @brief Construct a vector of n zeroes. //! @param n vector size explicit binary_indexed_tree(const int n) : bit_0(n), bit_1(n) {} //! @brief Construct a vector from an existing container. //! @tparam Container container type (deduced from parameter). //! @param src Source (container) template <typename Container> explicit binary_indexed_tree(const Container& src) : bit_0(src), bit_1(static_cast<int>(std::size(src))) {} //! @brief Construct a vector of length n filled with initial_values. //! @param n vector size //! @param initial_value initial value for all elements binary_indexed_tree(const int n, const Elem& initial_value) : bit_0(n, initial_value), bit_1(n) {} //! @return Vector size (length) [[nodiscard]] int size() const noexcept { return bit_0.size(); } //! @brief Add value to the index-th element. //! @param index index of the element to be added (0-indexed) //! @param value value to be added //! @note Time complexity: O(log size) void add(int index, const Elem& value) { bit_0.add(index, value); } //! @brief Add value to the elements within [left, right) (half-open interval) //! @param left lower limit of interval (0-indexed) //! @param right upper limit of interval (0-indexed) //! @param value value to be added //! @note Time complexity: O(log size) void uniform_add(int left, int right, const Elem& value) { CP_LIBRARY_ASSERT(0 <= left && left <= right && right <= size()); if (left != size()) { bit_0.add(left, value * (-1) * (left - 1)); bit_1.add(left, value); } if (right != size()) { bit_0.add(right, value * (right - 1)); bit_1.add(right, value * (-1)); } } //! @brief Calculate interval sum. //! @param left lower limit of interval (0-indexed) //! @param right upper limit of interval (0-indexed) //! @return Sum of the elements within [left, right) (half-open interval) //! @note Time complexity: O(log size) [[nodiscard]] Elem sum(int left, int right) const { if (left == 0) return partial_sum(right); else return partial_sum(right) - partial_sum(left - 1); } //! @brief Get the value of the index-th element. //! @param index index (0-indexed) //! @note Time complexity: O(log size) [[nodiscard]] Elem get(int index) const { return partial_sum(index + 1) - partial_sum(index); } //! @brief Set the value of the index-th element to value. //! @param index index (0-indexed) //! @param value value to be set //! @note Time complexity: O(log size) void set(const int index, const Elem& value) { bit_0.add(index, value - get(index)); } //! @brief Print debug information. //! @param name variable name //! @param os output stream void debug_print([[maybe_unused]] const std::string& name = "", [[maybe_unused]] std::ostream& os = std::cerr) const { #if (CP_LIBRARY_DEBUG_LEVEL >= 1) if (!name.empty()) os << name << ": "; os << "val [ "; for (int i = 0; i < size(); ++i) os << get(i) << ' '; os << "]\n"; if (!name.empty()) os << std::string(std::size(name) + 2, ' '); os << "sum [ "; for (int i = 0; i <= size(); ++i) os << partial_sum(i) << ' '; os << "]\n"; #endif } }; } // namespace lib #ifdef CP_LIBRARY_ASSERT_NOT_DEFINED # undef CP_LIBRARY_ASSERT # undef CP_LIBRARY_ASSERT_NOT_DEFINED #endif #endif // CP_LIBRARY_BINARY_INDEXED_TREE_HPP #line 9 "test/data_structure/binary_indexed_tree/1.test.cpp" int main() { std::ios_base::sync_with_stdio(false); std::cin.tie(nullptr); int N; std::cin >> N; std::vector<int> A(N); std::copy_n(std::istream_iterator<int>(std::cin), N, std::begin(A)); std::map<int, int> count; std::for_each(std::cbegin(A), std::cend(A), [&](const int a) { ++count[a]; }); std::vector<std::pair<int, int>> L, R; std::for_each(std::cbegin(count), std::cend(count), [&](const auto p) { L.emplace_back(p); R.emplace_back(p); }); std::sort(std::begin(L), std::end(L)); std::sort(std::rbegin(R), std::rend(R)); const int M = static_cast<int>(std::size(L)); lib::binary_indexed_tree<long long> L_acc(M), R_acc(M); lib::binary_indexed_tree<int> L_cnt(M), R_cnt(M); for (int i = 0; i < M; i++) { L_acc.add(i, L[i].first * L[i].second); L_cnt.add(i, L[i].second); R_acc.add(i, R[i].first * R[i].second); R_cnt.add(i, R[i].second); } using mint = lib::static_modint<998244353>; std::vector<mint> right(N), left(N); std::vector<int> rs(N), ls(N); for (int i = 0; i < N - 1; i++) { const int idx = static_cast<int>(std::distance(std::cbegin(L), std::lower_bound(std::cbegin(L), std::cend(L), std::pair {A[i], 0}))); L_cnt.add(idx, -1); L_acc.add(idx, -A[i]); if (i == 0 || idx == 0) continue; right[i] = mint(L_acc.sum(0, idx)); rs[i] = L_cnt.sum(0, idx); } for (int i = 0; i < N - 1; i++) { const int idx = static_cast<int>(std::distance(std::lower_bound(std::crbegin(R), std::crend(R), std::pair {A[N - 1 - i], 0}), std::crend(R)) - 1); --R[idx].second; R_cnt.add(idx, -1); R_acc.add(idx, -A[N - 1 - i]); if (i == 0 || idx == 0) continue; left[i] = mint(R_acc.sum(0, idx)); ls[i] = R_cnt.sum(0, idx); } std::reverse(std::begin(left), std::end(left)); std::reverse(std::begin(ls), std::end(ls)); mint res; for (int i = 0; i < N - 1; i++) { res += mint(right[i]) * ls[i]; res += mint(left[i]) * rs[i]; res += mint(A[i]) * rs[i] * ls[i]; } std::cout << res << '\n'; }